Asymptotically Near-Optimal Is Good Enough for Motion Planning

نویسندگان

  • James D. Marble
  • Kostas E. Bekris
چکیده

Asymptotically optimal motion planners guarantee that solutions approach optimal as more iterations are performed. There is a recently proposed roadmap-based method that provides this desirable property, the PRM∗ approach, which minimizes the computational cost of generating the roadmap. Even for this method, however, the roadmap can be slow to construct and quickly grows too large for storage or fast online query resolution. From graph theory, there are many algorithms that produce sparse subgraphs, known as spanners, which can guarantee nearoptimal paths. In this work, a method for interleaving an incremental graph spanner algorithm with the asymptotically optimal PRM∗ algorithm is described. The result is an asymptotically near-optimal motion planning solution. Theoretical analysis and experiments performed on typical, geometric motion planning instances show that large reductions in construction time, roadmap density, and online query resolution time can be achieved with a small sacrifice of path quality. If smoothing is applied, the results are even more favorable for the near-optimal solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near-Minimum-Time Motion Planning of Manipulators along Specified Path

The large amount of computation necessary for obtaining time optimal solution for moving a manipulator on specified path has made it impossible to introduce an on line time optimal control algorithm. Most of this computational burden is due to calculation of switching points. In this paper a learning algorithm is proposed for finding the switching points. The method, which can be used for both ...

متن کامل

Improved Heuristic Search for Sparse Motion Planning Data Structures

Sampling-based methods provide efficient, flexible solutions for motion planning, even for complex, highdimensional systems. Asymptotically optimal planners ensure convergence to the optimal solution, but produce dense structures. This work shows how to extend sparse methods achieving asymptotic near-optimality using multiple-goal heuristic search during graph constuction. The resulting method ...

متن کامل

Sparse roadmap spanners for asymptotically near-optimal motion planning

Asymptotically optimal planners, such as PRM∗, guarantee that solutions approach optimal as the number of iterations increases. Roadmaps with this property, however, may grow too large for storing on resource-constrained robots and for achieving efficient online query resolution. By relaxing optimality, asymptotically near-optimal planners produce sparser graphs by not including all edges. The ...

متن کامل

Asymptotically optimal sampling-based kinodynamic planning

Sampling-based algorithms are viewed as practical solutions for high-dimensional motion planning. Recent progress has taken advantage of random geometric graph theory to show how asymptotic optimality can also be achieved with these methods. Achieving this desirable property for systems with dynamics requires solving a two-point boundary value problem (BVP) in the state space of the underlying ...

متن کامل

Analysis of Asymptotically Optimal Sampling-based Motion Planning Algorithms for Lipschitz Continuous Dynamical Systems

Over the last 20 years significant effort has been dedicated to the development of samplingbased motion planning algorithms such as the Rapidly-exploring Random Trees (RRT) and its asymptotically optimal version (e.g. RRT∗). However, asymptotic optimality for RRT∗ only holds for linear and fully actuated systems or for a small number of non-linear systems (e.g. Dubin’s car) for which a steering...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011